

SoftwareMining COBOL to Java and C# - Simple, Safe & Effective

SoftwareMining

VSAM Handling

Copyright SoftwareMining

Intended Audience:

• Translation resource (responsible for preparing and performing translation)

• Java / C# Programmers and Architects

Version: 2.9

Overview

During the translation process, all VSAM File Definitions will be translated to SQL. The translated
Java application uses a Relational Database for its data not VSAM file or operating system files.

Page 2 of 30 www.softwaremining.com

Contents

1 Overview: Translating VSAM File Definitions. ... 3
1.1 XML Representation of the File Definition ... 3

1.2 Java /C# - Persistent Data Access Objects .. 3

1.3 SQL Schemas ... 3

2 VSAM Sequential Files ... 4
2.1 Record Sequential vs Line Sequential ... 4

2.2 What happens to Packed-Decimal fields in Sequential Files .. 4

2.3 Assigning File-names from environment variables. .. 4

2.4 Migrating Sequential Files to Comma-Separated-Values ... 5

3 VSAM KSDS – Indexed files .. 6
3.1 Different FD structures accessing the same data files. ... 6

3.1.1 Organizing Translation Order (generating CICSVSAM.cbl) for CICS programs 6
3.1.2 Use of Table-Names.ini (Cross Reference Table) in VSAM Files ... 10
3.1.3 Use of Table-Names.ini (Cross Reference Table) in CICS Applications 13

3.2 GDG handling in migrated KSDS to SQL .. 14

3.3 How are VSAM Array’s translated to SQL ... 14

3.4 VSAM KSDS - FAQ .. 16

3.5 Data Migration and EBCDIC migration .. 19

3.5.1 Packed Decimal aware Data-Access-Objects (DAO) ... 19
3.5.2 EBCDIC To ASCII migration steps .. 19
3.5.3 Limitations on Data Migration of complex structures with REDEFINED Packed-Decimals .. 20
3.5.4 Populating the databases (KSDS Files) .. 21
3.5.5 Sample Scripts ... 21

3.6 Performance Optimization techniques ... 22

3.6.1 Using SQL LIKE instead of Greater-or-Equal (>=) ... 22
3.6.2 Fine Tuning the LIKE statements ... 24
3.6.3 Limiting the number of rows returned by SQL Statement ... 24
3.6.4 Restricting the number of Keys used in SQL ... 25
3.6.5 Adding new SQL conditions to a search .. 26
3.6.6 Reviewing the runtime generated SQL ... 27

3.7 Working with Mainframe EBCDIC files.. 28

3.7.1 Running Java in ASCI (UTF) , but reading EBCDIC VSAM datafiles .. 29
3.7.2 Running Java in EBCDIC ... 29

Page 3 of 30 www.softwaremining.com

1 Overview: Translating VSAM File Definitions.

VSAM structures are defined in COBOL File-Definitions. The definition contains column names,
types and sizes.

SoftwareMining CORECT uses these File Definitions to produce the following artifacts from VSAM
File Definitions:

• XML Representation of the File Definition

• Java Data Access layer.

• SQL data schemas (Oracle, DB2, MySQL). (For KSDS/Indexed Files).

1.1 XML Representation of the File Definition

VSAM FD structures are first translated to an XML file containing same structural information.

The XML file is used internally to generate SQL Data-Schemas and the Java Data-Access layers. This
allows some configuration parameters to be changed, and the SQL/Java code to be regenerated.

1.2 Java /C# - Persistent Data Access Objects

One of the characteristics of the Java/C# Data-Access layer is its ability to work with COBOL like
data-structures.

It is these classes that handle COBOLs REDEFINES, COMP values, as well as the providing
equivalent of COBOL “Group” access methods.

The can also write the data in each record to a character-string, or more importantly – it can read
fixed length character string from a COBOL Line-SEQUENTIAL file and correctly populate the
underlying SQL tables.

The generated Java /C# Persistent Data-Access Objects and SQL schemas form the basis of
SoftwareMining Data Migration strategy.

1.3 SQL Schemas

During the translation, the hierarchical structures of COBOL File-Definitions will be flattened out,
and the REDEFINES and COMP values will be taken out and a simple SQL data schemas generated.

Page 4 of 30 www.softwaremining.com

2 VSAM Sequential Files

2.1 Record Sequential vs Line Sequential

Line-Sequential / Variable length files: COBOL’s (and the translated system) will use a CR-LF at end of
each record. This eases identification of each record easier. They are specially useful when the
structure may be of varied length (ie containing OCCURS-DEPENDING).

Record Sequential / Fixed length files: COBOL’s (and the translated system) concatenates the records
defined in this format. Hence, for a record defined to contain 100 characters, a data file containing 5
records will have 500 characters with no CR-LF used as a delimiter. Record-Sequential files are
especially useful if/when the data itself to contain CR-LF sequences – which may happen in
representation of Packed-Decimal fields.

The (translated) Cobol code often specified if a records is in Fixed or Variable length, and the
translator would mark the Data-Access-Object appropriately.

If/when the information is absent from the translated code – the system will default to using
VARIABLE length (line sequential) files.

This default can be overwritten using the following configuration:

C# / SoftwareMining.config:
 <corectSettings>
 <add key="SEQUENTIAL_RECORDS_ARE_VARIABLE_LENGTH" value="false" />

Java/ softwaremining.properties (SoftwareMining.config in C#):

SEQUENTIAL_RECORDS_ARE_VARIABLE_LENGTH=false

2.2 What happens to Packed-Decimal fields in Sequential Files

These are treated in same manner as COBOL.

Note the representation of some packed-decimal values may contain Carriage-Return characters.
Such datafiles cannot use CR-LF as record delimiters, and have to be marked as RECORD-SEQUENTIAL
to allow the system to read write using “record length” information instead of CR-LF delimiters. This
can be achieved by setting the default and/or using the API described in the above section.

Also, at a later stage (after testing phase) – the individual sequential files can be configured to
read/write from Comma-Separated-Values (CSV) file format. This obviously can significantly improve
the integration prospects for application.

In such cases, the numeric value of the COMP fields will be written out.

2.3 Assigning File-names from environment variables.

In many Cobol applications, the name of a data-file is passed JCL via to the application FILE-CONTROL
section.

 SELECT Client-Record assign to filename-variable ….

Page 5 of 30 www.softwaremining.com

The translation can use a similar approach – the environment variable filename-variable must be
created and assigned the appropriate value in a shell-scripts replacing the JCL. The program will then
use look for this environment-variable.

This is configured in the following screen, and applies to all VSAM files – indexed and sequential.

2.4 Migrating Sequential Files to Comma-Separated-Values

Changing the super-class of such classes from SequentialFile to AbstractCSVFile will generate the file
in new format. The main benefit if CSV format is:

• packed-decimal fields: CSV file will contain the field-value instead of binary representation of
the field-value.

• Isolation/Separation of every fields (in Sequential format – everything is joined together)

• Integration with other applications, e.g. Microsoft Excel

Page 6 of 30 www.softwaremining.com

3 VSAM KSDS – Indexed files

3.1 Different FD structures accessing the same data files.

Unlike an SQL Table, COBOL data-files do not contain any meta-data or column information. This
allows a data-file to be accessed by different structures defined in programs. Once we move to SQL
– the structure of the table has to be defined, and cannot be changed. For example, a table with
columns

 FIRST-NAME VARCHAR(20),

 LAST-NAME VARCHAR(20)

Cannot dynamically change to contain information

 NAME VARCHAR (40)

Where possible the translator will use a mixture of record-size & structural equivalence to
determine whether two structures can be merged/can map to the same database table.

In doing this, the following issues need further consideration:

o Organizing Translation Order.

o Accessing same table with different DAO’s (see use of DELEGATE classes)

o Informing translator the structures point to same table (see use of table-names.ini)

3.1.1 Organizing Translation Order (generating CICSVSAM.cbl) for CICS programs

CICS READ/WRITE statements refer to DATASETS. Often data-sets with different names refer
to the same data (SQL table). The aim of the section is to create a single COBOL program
(CICSVSAM.cbl) containing the primary structures to be used for generation of the SQL tables
and the associated Data-Access-Objects.

The translation of this file will generate SQL and the primary DAO’s (to be used as delegates).
All other programs should either use these directly or use structures which Delegate the SQL
read/write to these.

For example, lets say the project only contains 2 type of data-file (CLIENT and ITEM), each
defined in 2 different type of structure. Hence the project contains the following copybooks:

CLIENT-DETAILED.CPY:

 01 CLIENT-RECORD.

 05 FIRST-NAME PIC X(20).

 05 LAST-NAME PIC X(20).

CLIENT-SUMMARY.CPY:

 01 CLIENT-RECORD.

Page 7 of 30 www.softwaremining.com

 05 NAME PIC X(30).

 05 FILLER PIC X(10).

ITEM-DETAILED.CPY

 01 ITEM-RECORD.

 05 ITEM-ID PIC X(20).

 05 ITEM-NAME PIC X(20).

 05 ITEM-DESC PIC X(20).

ITEM- SUMMARY.CPY

 01 ITEM-RECORD.

 05 FILLER PIC X(60).

Lets say the project comprises of 2 programs :

programA references:

 CLIENT-DETAILED.cpy

 ITEM-SUMMARY.cpy

programB

 CLIENT-SUMMARY.cpy

 ITEM-DETAILED.cpy

The solution is to manually create a new program referencing the DETAILED copy books, and
then to translate this new program first. The translator will then be aware of the DETAILED
versions for CLIENT and ITEM, and can automatically switch to using the DETAILED
information when translating programs A and B.

The following are template for the CICSVSAM.cbl programs

CICS VSAM Template

 IDENTIFICATION DIVISION.

 PROGRAM-ID. CICSVSAM.

 ENVIRONMENT DIVISION.

 DATA DIVISION.

Page 8 of 30 www.softwaremining.com

 WORKING-STORAGE SECTION.

 01 WS-FIELDS.

 05 WS-RECORD-KEY PIC X.

 05 WS-RESPONSE PIC X.

 05 WS-LENGTH PIC 9.

 COPY CLIENT-DETAILED.

 COPY ITEM-DETAILED.

 PROCEDURE DIVISION.

 0000-MAIN.

 EXEC CICS READ

 DATASET('CLIENT')

 INTO(CLIENT-RECORD)

 RIDFLD(WS-RECORD-KEY)

 LENGTH(WS-LENGTH)

 RESP(WS-RESPONSE)

 END-EXEC.

 EXEC CICS READ

 DATASET('ITEM')

 INTO(ITEM-RECORD)

 RIDFLD(WS-RECORD-KEY)

 LENGTH(WS-LENGTH)

 RESP(WS-RESPONSE)

 END-EXEC.

Question: Where are there fewer SQL table generated than the number of FD’s in
CICSVSAM.cbl?

This by caused by system assuming two IDENTICAL (names & structures) File-Definitions are
the same one.

In most cases, this is a benefit. For example the same structure (lets call it CLIENT-RECORD) in
2 different files may be assigned to different files – but if system sees they are identical –
then it knows these things should be referencing the same database table.

Also make sure the following is un-ticked for the CICSVSAM.cbl file – you would probably
want to have it checked when processing other programs.

Page 9 of 30 www.softwaremining.com

Page 10 of 30 www.softwaremining.com

3.1.2 Use of Table-Names.ini (Cross Reference Table) in VSAM Files

The aim of this file is to help the translator in determining which delegates to use.

For example consider the following program:

 IDENTIFICATION DIVISION.

 PROGRAM-ID. PROGRAM-1.

 …

 FILE-CONTROL.

 SELECT CLIENT-FILE

 ASSIGN TO CLNT

 ORGANIZATION IS INDEXED.

 DATA DIVISION.

 FILE SECTION.

 FD CLIENT-FILE.

 01 CLIENT-REC.

 05 FIRST-NAME PIC X(20).

 05 LAST-NAME PIC X(20).

…

 IDENTIFICATION DIVISION.

 PROGRAM-ID. PROGRAM-2.

 …

 FILE-CONTROL.

 SELECT CLIENT-FILE2

 ASSIGN TO CLNT-2

 ORGANIZATION IS INDEXED.

 DATA DIVISION.

 FILE SECTION.

 FD CLIENT-FILE2.

 01 CLIENT-RECORD.

 05 ID PIC X(30).

…

Assuming CLNT and CLNT-2 refer to the same data-set (client data), then both programs will need to
access the same SQL table. However, since the system will be unable to detect the two files refer to
the same table as data formats is different in each program (ie:

Program-1 defines:

 01 CLIENT-REC.

 05 FIRST-NAME PIC X(20).

 05 LAST-NAME PIC X(20).

Page 11 of 30 www.softwaremining.com

And program-2 defines a totally different structure.

 01 CLIENT-RECORD.

 05 ID PIC X(30).

The translation of the two programs will result in generation of the following two data-access-objects
(DAO):

• ClientFile(for program1) : Accessing Table CLNT

• ClientFile2(for program2) : Accessing Table CLNT-2

You can tell the translator to treat the two files as the same table by the following:

• Create a file called "table-names.ini" in the [SoftwareMining-installation-dir]\bin

• Please the following information in this file:

[PROGRAM-1]

CLIENT-FILE=CLIENT-SQL-TABLE

[PROGRAM-2]

CLIENT-FILE-2=CLIENT-SQL-TABLE

With the introduction of table-names.ini, the translation of the two programs will result in
generation of the following two data-access-objects (DAO):

• ClientFile DAO (for program1) : Accessing Table CLIENT-SQL-TABLE

• ClientFile2DAO(for program2) : delegating the access to ClientFile DAO – which will read the
data from CLIENT-SQL-TABLE.

In this case, the following two classes will be generated:

com.companyxxx.applicationxxx.persistent.ClientFile

and

com.companyxxx.applicationxxx.persistent.program2.ClientFile2

The constructor for program2. ClientFile2will delegate the database access to “ClientFile” class by
a statement such as:

 public ClientFile2() {

 super(owner);

 assignDelegateDAO(new ClientFile(owner));

 ...

 }

Page 12 of 30 www.softwaremining.com

This will cause all calls to clientFile2 CRUD calls to be redirected to clientFile, and the data then
transferred from clientFile to clientFile2 (similar to a MOVE statement).

The following flag can be used for telling the system table-names.ini uses File-Definition or 01-level
name for each record:

Page 13 of 30 www.softwaremining.com

3.1.3 Use of Table-Names.ini (Cross Reference Table) in CICS Applications

The aim of this file is to help the translator in determining which structures represent the
same files.

Lets say the CICS program-3 contains:

Prog-3:

 EXEC CICS READ

 DATASET('CLIENT')

 INTO(CLIENT-RECORD)

 RIDFLD(WS-RECORD-KEY)

 LENGTH(WS-LENGTH)

 RESP(WS-RESPONSE)

 END-EXEC.

But CICS programs 3 and 4 contain :

Prog-4:

 EXEC CICS READ

 DATASET('CLIENT-4')

 INTO(CLINT-4)

 RIDFLD(WS-RECORD-KEY)

 LENGTH(WS-LENGTH)

 RESP(WS-RESPONSE)

 END-EXEC.

Prog-5:

 EXEC CICS READ

 DATASET('CLIENT-5')

 INTO(WS-CLIENT)

 RIDFLD(WS-RECORD-KEY)

 LENGTH(WS-LENGTH)

 RESP(WS-RESPONSE)

 END-EXEC.

Assuming the data-sets 'CLIENT' , 'CLIENT-4' and 'CLIENT-5' correspond to the same target SQL
table, then the translator will need the following in table-names.ini file:

[PROGRAM-3]

CLIENT=CLIENT-SQL-TABLE

[PROGRAM-4]

CLIENT-4=CLIENT-SQL-TABLE

[PROGRAM-5]

CLIENT-5=CLIENT-SQL-TABLE

Page 14 of 30 www.softwaremining.com

3.2 GDG handling in migrated KSDS to SQL

Q: How GDG Support for KSDS Files:

The system can incorporate an extra column to represent GDG within the tables/Classes which will
require GDG handling. However, the translator will have to be told about the tables requiring extra
columns.

In the setup window :

1. Field-1 facilitates defining a new COLUMN for each database table

2. Field-2 Allows adding SQL condition into each Object-Relation DAO

3. Field-3 Allows adding parameter to the Object-Relation DAO files. For example, define a
parameter GDG-1, and then insert the following into gdg.properties (which needs to be
accessible at runtime by the application):

GDG1=(YEAR=2015)

3.3 How are VSAM Array’s translated to SQL

A KSDS File-Definition may contain arrayed fields. The system can provide different mechanisms of
migrating the arrayed fields into a SQL tables.

The following setup screen caters for the different configurations.

Page 15 of 30 www.softwaremining.com

For example, consider the definition:

05 ADDRESS PIC X(20) .

• Option-1

The system can create a separate column for each array. The above example will create 3
columns: ADDRESS_1 , ADDRESS_2 and ADDRES_3 – each as VARCHAR(20). The system can be
configured to start the indexes at 0 or 1 (E.g. ADDRESS_0 to be the first column).

To generate SQL whose column names start at 0 - enter the following line under [Database]
section of corect.ini (We will expose this in the setup screen in next build).

Arrayed SQL Column start at=0

To get Java-framework to start the numbering at 0 – enter the following property into
softwaremining.properties for Java translations, (SoftwareMining.config in C#):

OR_ARRAY_INDEX_BASE=0

• Option-2 The approach to handling arrayed items (OCCURS) is to generate a single CHAR or
BLOB/CLOB/ (IMAGE in SQLServer). The above example will result in a single column
ADDRESS CHAR(60).

Page 16 of 30 www.softwaremining.com

3.4 VSAM KSDS - FAQ

Wild-Cards in SQL: Will the system use wild-cards in dynamically generated SQL?
When converted code make a call to Database, it will use explicit column names instead of
wildcards (SELECT * FROM ..) .

Data-Types: Does Java code used for OLTP and/or batch processing convert data queried from Oracle
to COBOL data type? For example number (9,2) to comp-3 to be presented, displayed or passed to
other programs on Unix/Java environment.

The column will be defined as NUMBER in Oracle. The necessary conversion to COMP will be
done by SoftwareMining framework.

Logging: How do I see the SQL generated for Object-Relational classes.

These are dynamically generated at runtime. To see the generated SQL at runtime – please
add the following from log4j.property file.

log4j.logger.com.softwaremining.sql=TRACE

Object-Relational Mapping: How is the libraries pick up information for the SQL generation?

The libraries generate the SQL at runtime the information provided by each class in
“com.company.app.persistent” package

The TABLE-NAME is taken from the top-most group definition. The translator may over-ride this
using the statement:

 persistentClass.assignTableName(“YYYY”);

The Field-names are taken from names associated with each Field.

Field/Column sizes. Does conversion tool have any record limitation that Oracle record must match
the same order and fixed size of COBOL copybook? For example, if copybook record size is fixed 100,
then does the data saved and retrieved from Oracle have to be 100 fixed as well?

For character type field, the answer is yes. If there is a requirement to change the size, then
the size in database as well as the Java class has to change.

For numeric fields, are different – for example the oracle’s INTEGER datatype will be used for
representation of PIC 9 and PIC 9(4)

Redefines: What happens to redefined fields?

REDEFINEd fields do not end up as columns in database, as their inclusion would introduce
normalization issues.

Page 17 of 30 www.softwaremining.com

When a redefined field has to appear in the database, the solution would be to reverse the
REDEFINEs in COBOL – before translating the program. (ie the group containing the KEY
should be the main group, and the other groups redefining it).

Other solution would be to manually reverse the REDEFINES in the generated XML, and then
regenerate – both SQL and DataAccessObject will be regenerated.

Lets say we have a structure with 2 groups, and group-2 redefines Group-1.

We can only put fields from one of the groups (group-1) in the SQL – otherwise there will be
duplication and normalization problems.

Page 18 of 30 www.softwaremining.com

Redefined Index fields

Since the fields from REDEFINEs group are not allowed, then they cannot form indexes
either.

Another solution would be to reorganize the KEY – so it belong to main group – instead of
the redefinition.

The quick solution would be to reverse the REDEFINES – (ie group-1 redefines group-2).

How to Split an VSAM Application (e.g. Batch and Online) – Translating into 2 separate directories

The main challenge would be to enable re-use the Persistent classes generated in first
translation (e.g. Online) in the 2nd (e.g. batch)

To enable this, please copy the folder xml/persistence from the first application, into the
target output directory of 2nd application. The XML/persistence contains all the information
regarding previously translated part of the program, and allows the translator to reuse the
existing classes.

Just before translation - copy online/xml/persistent directory to batch/xml/persistent. The
system will become aware of all previously translated persistent classes (in package
online.persistence), and will reuse them. Some of them maybe re-generated, but the
regenerated code would be compatible with the original set. It would be prudent to back up
the original set in order to do a comparison (diff) to see what has changed.

At the end of the batch translation stage, assuming the translation was done to a totally
brand new directory, with no previous Java classes (specifically no persistent java files), you
will end up with the following directories / packages:

• online/persistent (package online.persistence) : the generated duplicates – you can
compare these with the original set to make sure nothing has changed. You can then
create a new jar file for persistence layer – this would contain the online.persistent
classes from both sets, and remove the set from batch and online.

• Batch/persistent- This should only contain SEQUENTIAL files or KSDS files for which
no merges were found.

Page 19 of 30 www.softwaremining.com

3.5 Data Migration and EBCDIC migration

SoftwareMining will translate COBOL FD definitions to a java-bean format – the bean contains all
necessary information regarding every field’s format (COMPUTATIONAL, String, 9(nn) …) and starting
position. The format and position information can be used by another SoftwareMining utility to read
a data file, populate the individual fields in the java-bean, and then write the information to the
appropriate database table.

3.5.1 Packed Decimal aware Data-Access-Objects (DAO)

For each VSAM structure, SoftwareMining will produce an Object-Relational Data-Access-Object and
an SQL schema. For example, a CLIENT-RECORD will result in a CLIENT-TABLE (db schema) and
ClientClass.java (DAO). The DAO will be aware of the original COBOL format for each field, e.g. which
field is a Packed-decimal, which field is a String, what are the fields sizes, what is the associated
table-name, the name of every field, … .

In migration of VSAM KSDS Files to SQL-Tables, packed decimal fields will be represented in
numerical columns in SQL tables. E.g. The a field called AGE will be represented in a INTEGER column
in SQL. This column will contain the numerical value of the field (e.g. 30) and not the binary
representation used in Packed-Decimal fields.

3.5.2 EBCDIC To ASCII migration steps

In EBCDIC to ASCII conversion, the characters representing Packed-Decimal fields must be excluded
from the conversion process. Mainframe FTP utility provides EBCDIC data to ASCII, but the utility will
not know which characters correspond to Packed-Decimal fields.

During transfer of files to/from Mainframe, the FTP mode must hence be set to BINARY (to keep all
original characters). The actual conversion can be performed using Packed Decimal aware Data-
Access-Objects (DAO) generated by SoftwareMining using EbcdicConverter utility.

Examples:

 java com.softwaremining.tools.datamigration.EbcdicConvertor e2a
com.company.app1.persistence.Client EBCDIC.input.datafile ASCII.output.datafile

Where

e2a – Ebcdic to Ascii (alternatively use a2e for asci to Ebcdic).

 com.company.app1.persistence.Client is one of the translated DAO classes.

http://www.softwaremining.com/javadoc/com/softwaremining/tools/datamigration/EbcdicConvertor.html

Page 20 of 30 www.softwaremining.com

3.5.3 Limitations on Data Migration of complex structures with REDEFINED
Packed-Decimals

When a structure (or DAO) contains complex redefinitions of fields mapped to Packed-Decimal (PD)
fields, the EbcdicConvertor will be unable to establish whether to EBCDIC to Ascii migration on the
position will/will-not be required. The tool may make an incorrect assumption. Therefore character
conversion on structures with complex redefinitions will need manually verification, and may require
manual correction.

The EBCDIC conversion utility will perform character conversion on data corresponding to ALL fields
except:

1. Packed-Decimal fields. PD data have same binary representation on translated system,
mainframe or rehosted systems (e.g. using Microfocus or Fujitsu Cobol). Therefore PD fields
should not undergo character conversion.

2. REDEFINED Fields.

For example when dealing with the translation of the structure:

01 RECORD1.

 05 FOO PIC S9(5) COMP-3.

 05 BAR-R PIC X(3) REDEFINES FOO.

 05 EFG PIC X(10).

Fields FOO and BAR-R both are at beginning of structure RECORD1- ie they start at position 0. They
are both represented by to 3 characters. The EBCDIC character conversion utility will iterate through
all fields to do the following:

• Field FOO, position 0 – length 3 : Ignore due to rule 1 above (ignore Packed-Decimal fields)

• Field BAR-R, position 0 – length 3 : Ignore due to rule 1 above (ignore redefined fields)

• Field EFG, position 3 – length 10 : Perform character conversion on residing between
positions 3 and 13

However, consider what happens if the structure is changed to:

01 RECORD1.

 05 BAR PIC X(3) .

 05 FOO-R PIC S9(5) COMP-3 REDEFINES BAR.

 05 EFG PIC X(10).

Page 21 of 30 www.softwaremining.com

• Field BAR, position 0 – length 3 : is neither Packed-DEC or REDEFINES. Perform character
conversion on residing between positions 1 and 3

• Field FOO-R, position 0 – length 3 : Ignore due to rule 1 and rule-2 above

• Field EFG, position 3 – length 10 : Perform character conversion on residing between
positions 3 and 13

3.5.4 Populating the databases (KSDS Files)

The system uses the SEQUENTIAL part of the COBOL KSDS data-files (i.e. just the data, and not the
index information). It is the Sequential Data which has to be FTP’ed across and used in population of
generated SQL Schemas.

The data migration strategy is based on a utility which can feed data from the KSDS Sequential data
file into SoftwareMining generate DAO. It is the DAO which inserts the data into the SQL table. The
utility is also able to perform EBCDIC to ASCI conversion on the supplied data-file.

For more information please see PopulateDbTableFromSequentialFile .

3.5.5 Sample Scripts

Download Sample runtime scripts (batch programs) for EBCDICConvertor, data migration and
more.

http://www.softwaremining.com/javadoc/com/softwaremining/jcl/PopulateDbTableFromSequentialFile.html
http://www.softwaremining.com/download/sm-sample-runtime-scripts.zip

Page 22 of 30 www.softwaremining.com

3.6 Performance Optimization techniques

The Object-Relational classes will dynamically generate the SQL necessary to access database at
runtime. The performance of system can be greatly affected by

• amount of the data available in database,

• number of indexes defined on the tables,

• the number of KEYS used for the search (the issued SQL will have to ORDER the results
using the keys),

• types of search (an Equality search is faster than Equals-or-Greater-Than .

The following section looks at the optimization API available in the SoftwareMining framework.

3.6.1 Using SQL LIKE instead of Greater-or-Equal (>=)

Method: void assignChangeGEConditonToLIKE

JavaDoc:
http://www.softwaremining.com/javadoc/com/softwaremining/sql/ISQLWrapper.html#assignChang
eGEConditonToLIKE(boolean)

Description: In certain conditions replacing GE (>=) searches in an SQL statement with LIKE can
potentially offer a huge performance improvement on the database. For Example:

SELECT ... from TABLE WHERE KEY_1 >= ? AND KEY_2 >= ?.

If each key is 5 chars, and the supplied values are "A " and "B " - the above translates to:

SELECT ... from TABLE WHERE KEY_1 >= 'A ' AND KEY_2 >= 'B '

Converting it to LIKE will become

SELECT ... from TABLE WHERE KEY_1 LIKE 'A%' AND KEY_2 LIKE 'B%'

Note in this case the values 'A ' and 'b ' are trimmed (spaces removed) before the % is added. Ie
when the value passed to key1 is ‘ABCDE’ – then the system will generate:

SELECT ... from TABLE WHERE KEY_1 >= 'ABCDE' AND KEY_2 LIKE 'B%'

Usage Example:

Company company = new Company(this);

…

company. assignChangeGEConditonToLIKE (true);

company.seek(company.getGroupKey() , CONDITION_TYPE_GREATER_OR_EQUAL);

http://www.softwaremining.com/javadoc/com/softwaremining/sql/ISQLWrapper.html#assignChangeGEConditonToLIKE(boolean)
http://www.softwaremining.com/javadoc/com/softwaremining/sql/ISQLWrapper.html#assignChangeGEConditonToLIKE(boolean)

Page 23 of 30 www.softwaremining.com

Assigning Application Wide Default Values

To define the above for ALL generated SQL statements – add the following to db.properties
configuration file:

OR_CHANGE_GE_CONDITION_TO_LIKE__DEFAULT=true

Page 24 of 30 www.softwaremining.com

3.6.2 Fine Tuning the LIKE statements

Method: void assignChangeGTEQ2EQForLIKECondition

JavaDoc:
http://www.softwaremining.com/javadoc/com/softwaremining/sql/ISQLWrapper.html#assignChang
eGTEQ2EQForLIKECondition(boolean)

Description:

Only applies when Using SQL LIKE instead of Greater-or-Equal (e.g. defining the following in
db.properties file:

OR_CHANGE_GE_CONDITION_TO_LIKE__DEFAULT=true

E.g. Consider generating

SELECT ... from TABLE WHERE KEY_1 >= ? AND KEY_2 >= ?.

If each key is 5 chars, and the supplied values are "ABCDE" and "B " - the above translates to:

SELECT ... from TABLE WHERE KEY_1 >= 'ABCDE' AND KEY_2 >= 'B '

Converting it to LIKE will become

SELECT ... from TABLE WHERE KEY_1 >= 'ABCDE' AND KEY_2 LIKE 'B%'

When this flag is set, if the char-count of a field is equal to that of the supplied value, then the
generated SQL will become

SELECT ... from TABLE WHERE KEY_1 = 'ABCDE' AND KEY_2 LIKE 'B%'

Usage Example:

Assigning Application Wide Default Values

To define the above for ALL generated SQL statements – add the following to db.properties
configuration file:

OR_CHANGE_GE_CONDITION_TO_LIKE__DEFAULT=true

OR_CHANGE_GTEQ_TO_EQ_FOR_LIKE_CONDITIONS__DEFAULT=true

3.6.3 Limiting the number of rows returned by SQL Statement

Methods: assignTopRowSelectStrategyCount and

assignTopRowSelectStrategyRange(int startRowNumber, int count);

JavaDoc:

http://www.softwaremining.com/javadoc/com/softwaremining/sql/ISQLWrapper.html#assignTopRo
wSelectStrategyCount(int)

Company company = new Company(this);

…

company.assignChangeGEConditonToLIKE (true);

company.assignChangeGTEQ2EQForLIKECondition (true);

company.seek(company.getGroupKey() , CONDITION_TYPE_GREATER_OR_EQUAL);

http://www.softwaremining.com/javadoc/com/softwaremining/sql/ISQLWrapper.html#assignChangeGTEQ2EQForLIKECondition(boolean)
http://www.softwaremining.com/javadoc/com/softwaremining/sql/ISQLWrapper.html#assignChangeGTEQ2EQForLIKECondition(boolean)
http://www.softwaremining.com/javadoc/com/softwaremining/sql/ISQLWrapper.html#assignTopRowSelectStrategyCount(int)
http://www.softwaremining.com/javadoc/com/softwaremining/sql/ISQLWrapper.html#assignTopRowSelectStrategyCount(int)

Page 25 of 30 www.softwaremining.com

http://www.softwaremining.com/javadoc/com/softwaremining/sql/ISQLWrapper.html#assignTopRo
wSelectStrategyRange(int, int)

Description: This feature is usually applicable to online applications. Consider a scenario where there
are over hundred thousand records in a table (eg. Zip-code table), and an online screen offers the
user to scroll through them from a user defined point - (e.g. from letter “B”)– at a rate of 20 records
per-page.

The default system behaviour would be to issue a SQL select statement which may return hundred
thousand records, e.g.

SELECT ... from TABLE WHERE KEY_1 >= ?

For an online application – returning too much data may not be necessary – the user is unlikely to
scroll through thousands of pages. This API will allow the system to limit the number of rows
ORDERED and returned by the database.

Usage Example:

By using this API the system will issue the following SQL statement for ORACLE database. (the SQL is
slightly different for DB2, MS-SQL and MySQL)

SELECT ... from TABLE WHERE KEY_1 >= ?

 ROWNUM < OR_200

Assigning Application Wide Default Values

To define the above for ALL generated SQL statements – add the following to db.properties
configuration file:

OR_TOP_ROW_SELECT_STRATEGY_COUNT__DEFAULT=200

3.6.4 Restricting the number of Keys used in SQL

Methods: assignLowerLimitForExpandGTEQSearches and

 assignUpperLimitForExpandGTEQSearches

JavaDoc:

http://www.softwaremining.com/javadoc/com/softwaremining/sql/ISQLWrapper.html#assignLower
LimitForExpandGTEQSearches(int)

http://www.softwaremining.com/javadoc/com/softwaremining/sql/ISQLWrapper.html#assignUpper
LimitForExpandGTEQSearches(int)

Description: This feature is usually applicable to searches on ORM classes which contain many KEYS.

Company company = new Company(this);

…

company. assignTopRowSelectStrategyCount (200);

company.seek(company.getGroupKey() , CONDITION_TYPE_GREATER_OR_EQUAL);

http://www.softwaremining.com/javadoc/com/softwaremining/sql/ISQLWrapper.html#assignTopRowSelectStrategyRange(int
http://www.softwaremining.com/javadoc/com/softwaremining/sql/ISQLWrapper.html#assignTopRowSelectStrategyRange(int
http://www.softwaremining.com/javadoc/com/softwaremining/sql/ISQLWrapper.html#assignLowerLimitForExpandGTEQSearches(int)
http://www.softwaremining.com/javadoc/com/softwaremining/sql/ISQLWrapper.html#assignLowerLimitForExpandGTEQSearches(int)
http://www.softwaremining.com/javadoc/com/softwaremining/sql/ISQLWrapper.html#assignUpperLimitForExpandGTEQSearches(int)
http://www.softwaremining.com/javadoc/com/softwaremining/sql/ISQLWrapper.html#assignUpperLimitForExpandGTEQSearches(int)

Page 26 of 30 www.softwaremining.com

Lets say there are 3 key fields involved in a search with condition GTEQ. In default settings, the
following SQL condition will be generated

SELECT … FROM … WEHRE

 (A > ?)

or (A = ? and B > ?)

or (A = ? and B = ? and C >= ?))

by declaring dao.assignLowerLimitForExpandGTEQSearches(3) - the conditions for key
below position 3 are ignored, and only the red areas below will be generated.

SELECT … FROM … WHERE

 (A > ?)

or (A = ? and B > ?)

or (A = ? and B = ? and C >= ?))

Similarly by using dao.assignUpperLimitForExpandGTEQSearches(1) - the conditions for
key above position 1 are ignored, and only the red areas below will be generated.

SELECT … FROM … WHERE

 (A > ?)

or (A = ? and B > ?)

or (A = ? and B = ? and C >= ?))

Usage Example:

For a Object relational Data-Access-Object DAO with 5 keys

When using the above API the system will issue the black (SELECT) , blue (UpperLimit), and red
(LowerLimit) of the following SQL statement (the grey parts will not be generated).

SELECT … FROM … WHERE

 (A > ?)

or (A = ? and B > ?)

or (A = ? and B = ? and C >= ?))

or (A = ? and B = ? and C = ? and D >= ?))

or (A = ? and B = ? and C = ? and D = ? and E = ?))

Assigning Application Wide Default Values

This value needs to be specific to each Data-Access – and cannot have an application wide setting.

3.6.5 Adding new SQL conditions to a search

Methods: assignSQLConditions and

assignAdditionalSQLConditions

DAO dao = new DAO(this);

…

dao. assignUpperLimitForExpandGTEQSearches (2);

dao. assignLowerLimitForExpandGTEQSearches (4);

company.seek(company.getGroupKey() , CONDITION_TYPE_GREATER_OR_EQUAL);

Page 27 of 30 www.softwaremining.com

JavaDoc:

http://www.softwaremining.com/javadoc/com/softwaremining/sql/ISQLWrapper.html#assignSQLCo
nditions(java.lang.String)

http://www.softwaremining.com/javadoc/com/softwaremining/sql/ISQLWrapper.html#assignAdditi
onalSQLConditions(java.lang.String)

Description: These APIs allow customization of the WHERE conditions generated for each DAO.

assignSQLConditions Prohibits auto-generation of default conditions (using the keys
declared on DAO).

assignAdditionalSQLConditions Appends the new condition to the end of the ones generated by
system (using the keys declared on DAO).

Also see:

assignSQLConditions Prohibits auto-generation of default conditions (using the keys
declared on DAO).

assignAdditionalSQLConditions Appends the new condition to the end of the ones generated by
system (using the keys declared on DAO).

Also see

assignAdditionalSQLOrderBy Insert additional ORDER-BY statement to end of generated SQL

Usage Example:

Generates:

SELECT ... from TABLE WHERE KEY_1 >= ? AND (COLUMN_2 = 12)

3.6.6 Reviewing the runtime generated SQL

Add the following to logging configuration file:

Logj4 log4j.logger.com.softwaremining.sql=TRACE

Log4j2 <Logger name="com.softwaremining.sql" level="TRACE"/>

Log4net <logger name="SoftwareMining.sql"><level value="TRACE" /></logger>

Company company = new Company(this);

…

company. assignAdditionalSQLConditions("(COLUMN_2 = 12)");

company.seek(company.getGroupKey() , CONDITION_TYPE_GREATER_OR_EQUAL);

http://www.softwaremining.com/javadoc/com/softwaremining/sql/ISQLWrapper.html#assignSQLConditions(java.lang.String)
http://www.softwaremining.com/javadoc/com/softwaremining/sql/ISQLWrapper.html#assignSQLConditions(java.lang.String)
http://www.softwaremining.com/javadoc/com/softwaremining/sql/ISQLWrapper.html#assignAdditionalSQLConditions(java.lang.String)
http://www.softwaremining.com/javadoc/com/softwaremining/sql/ISQLWrapper.html#assignAdditionalSQLConditions(java.lang.String)

Page 28 of 30 www.softwaremining.com

3.7 Working with Mainframe EBCDIC files

Usually the translated system will be running on Unix or MS Windows machine and will be using
UTF character sets for everything including screen displays, database access, sorting data files and
read/write from Sequential and indexed files. These operations can be further fine-tuned using the
following settings into the file softwaremining.properties for Java translations,
(SoftwareMining.config in C#).

APP_CHARACTER_ENCODING
Default to ISO-8859-1 (mainly used in construction of Strings)
Same options as DB_CHARACTER_ENCODING

APP_CHARACTER_ENCODING=ISO-8859-1

Character encoding for database access (Translatio of VSAM to ORM, as well as
EXEC SQL).
one of "UTF8" , "UTF16" , "ISO-8859-1" , "US-ASCII" , or "8859_1" (EBCDIC), ...
Defaults to APP_CHARACTER_ENCODING

#DB_CHARACTER_ENCODING=ISO-8859-1

The following setting controls read/write of files from file system.
setting it to IBM-1047 will allow it read mainframe Ebcdic files
Defaults to APP_CHARACTER_ENCODING

DATAFILE_CHARACTER_ENCODING=IBM-1047

But sometime it is necessary to run parts of the system on mainframe (COBOL), and part in Java/C#.
In such cases there will be a need for the translated system to access the EBCDIC data files generated
on mainframe, or to generate EBCDIC files for use on the mainframe.

The following two approaches cater for this requirements.

Page 29 of 30 www.softwaremining.com

3.7.1 Running Java in ASCI (UTF) , but reading EBCDIC VSAM datafiles

The following softwaremining.properties for Java translations, (SoftwareMining.config in C#) allows
reading/writing ALL data files in EBCDIC character-sets.

Allows running java in default c\haracter-set (as assigned on the machine -
usually set to -8859-1)
but reading and writing EBCDIC data files for compatibility with original
mainframe.
Defaults to false
DATAFILES_ARE_EBCDIC=false

The following setting controls read/write of files from file system.
setting it to IBM-1047 will allow it read mainframe Ebcdic files
Defaults to APP_CHARACTER_ENCODING

DATAFILE_CHARACTER_ENCODING=IBM-1047

Character encoding used on Mainframe.
this is only used for EBCDIC to ASCII conversion (if any), and when
USE_SM_EBCDIC_DECODER=false
Defaults to IBM-1047

ORIG_EBCDIC_CHARACTER_ENCODING=IBM-1047

Only used for data-migration or working with EBCDIC files.
When set - The system will use SoftwareMining's built-in utilities for
conversion from EBCDIC to ASCI and back.
Otherwise, it will use JAVA's string encoding/decoding
When false (ie using java's character encodings) the following parameters
need to be set:
APP_CHARACTER_ENCODING (typically set to default "ISO-8859-1")
DATAFILE_CHARACTER_ENCODING (Set to "IBM-1047" for Ebcdic data files).
When switched off, it will use SoftwareMining's inbuilt conversion.
USE_SM_EBCDIC_DECODER=true

Note limitations remain on complex structures with REDEFINES statements.

3.7.2 Running Java in EBCDIC

Java runtime configuration allows it to run with a character encoding different to the standard
defined on the machine. E.g. a batch application can be started using:

java -Dfile.encoding=IBM-1047 com.softwaremining.SMTextAppLauncher com.company.app1.Prog1

Page 30 of 30 www.softwaremining.com

Please also use the appropriate configurations for character settings in softwaremining.properties
for Java translations, (SoftwareMining.config in C#).

